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Based on a detailed theoretical examination of the lattice distortion in high-index epilayers in terms of
continuum mechanics, expressions are deduced that allow the calculation and experimental determination of
the strain tensor for �hhl�-oriented �Ga,Mn�As layers. Analytical expressions are derived for the strain-
dependent free-energy density and for the resistivity tensor for monoclinic and orthorhombic crystal symme-
tries, phenomenologically describing the magnetic anisotropy and anisotropic magnetoresistance by appropri-
ate anisotropy and resistivity parameters, respectively. Applying the results to �113�A orientation with
monoclinic crystal symmetry, the expressions are used to determine the strain tensor and the shear angle of a
series of �113�A-oriented �Ga,Mn�As layers by high-resolution x-ray diffraction and to probe the magnetic
anisotropy and anisotropic magnetoresistance at 4.2 K by means of angle-dependent magnetotransport.
Whereas the transverse-resistivity parameters are nearly unaffected by the magnetic field, the parameters
describing the longitudinal resistivity are strongly field dependent.
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I. INTRODUCTION

For the past two decades, dilute magnetic semiconductors,
and in particular ferromagnetic semiconductors, have been
attracting considerable attention due to their exceptional
physical properties as well as their potential applicability in
information technology. Ferromagnetism mediated by delo-
calized p-type carriers1 could be implemented in the standard
semiconductor GaAs by incorporating magnetic Mn atoms
on Ga sites, cf. Ref. 2 and references therein. Since the high-
est Curie temperature reported so far is 185 K,3 the applica-
tion of �Ga,Mn�As in electronic devices operating at room
temperature seems to be doubtful. Nevertheless, due to its
specific electronic and magnetic properties, �Ga,Mn�As rep-
resents an ideal test system for future spintronic applications.

Magnetic anisotropy �MA� and anisotropic magnetoresis-
tance �AMR� are well established key features of �Ga,M-
n�As, largely arising from spin-orbit coupling in the valence
band. Consequently, both MA and AMR strongly depend on
crystal symmetry and strain.1,4–8 On the one hand, this de-
pendence defines the magnetic hard and easy axes,2,4,9 con-
trolling the orientation of the magnetization and thus the
electrical resistivity. On the other hand, it offers a method to
intentionally manipulate the magnetic properties, e.g., by ap-
plying external strain via piezoelectric actuators6,9–12 or by
lithographically induced strain relaxation.6,13,14 In any case, a
quantitative description of the relation between crystal struc-
ture and MA and AMR, ideally by means of analytical ex-
pressions, is imperative.

So far, most of the published work focuses on �Ga,Mn�As
grown on �001�-oriented substrates while only few publica-
tions report on �Ga,Mn�As grown on high-index substrates
such as �113� and �114�,15–19 where the description of the
MA and the AMR is more complicated due to the reduced
crystal symmetry. Potential applications of high-index
�Ga,Mn�As are ridge structures with �113�A sidewalls and
�001� top layers,20 which could be used, e.g., for memory
devices exploiting different coercitive fields of the sidewalls

and top layers. Yet, a coherent theoretical description of the
MA and AMR for layers on high-index substrates, which
takes into account the symmetry of the strain tensor �̄, is still
missing.

In this work, we present a concise phenomenological de-
scription of the MA and AMR for �hhl�-oriented ferromag-
netic layers. To this end, we describe the structural properties
of epitaxial high-index layers in terms of continuum mechan-
ics and apply the theoretical results to the case of �113�A
orientation. High-resolution x-ray diffraction �HRXRD�
measurements were performed on a series of �113�A-oriented
�Ga,Mn�As layers to quantitatively determine the epitaxial
strain and symmetry of the layers. The MA and AMR
were investigated by angle-dependent magnetotransport
measurements. In agreement with previous studies on
�113�A-oriented �Ga,Mn�As,17–19 we observe a uniaxial MA
along the �001� direction, which can now be explained in the
light of our theoretical model. Whereas the transverse-
resistivity parameters turn out to be nearly constant, a sys-
tematic dependence of the longitudinal-resistivity parameters
on the strength of the external magnetic field is found.

The paper is organized as follows: in Sec. II A, we calcu-
late the strain tensor �̄ for �hhl�-oriented layers and provide
formulas that allow experimental access to �̄. The results are
applied to �113�-oriented �Ga,Mn�As samples where the Bra-
vais lattice is base-centered monoclinic. An extension of the
theory to partially relaxed layers is given in Appendix A. In
Sec. II B, we present a phenomenological expression for the
MA taking into account the specific form of the strain tensor
for �hhl�-oriented layers. In Sec. II C, we derive expressions
for the longitudinal and transverse resistivities �long and
�trans, respectively, which apply to monoclinic crystal sym-

metry and current direction along �332̄�. The resistivity ten-
sors for monoclinic and orthorhombic symmetries can be
found in Appendix B. They are required in the derivation of
�long and �trans for arbitrary current directions. In Secs. III A
and III B, the experimental results of the HRXRD and mag-
netotransport studies are presented.
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II. THEORETICAL CONSIDERATIONS

Crystal symmetry and epitaxial strain strongly influence
the MA and the AMR. Therefore, we start with a detailed
theoretical examination of the lattice distortion of �hhl� lay-
ers in terms of continuum mechanics and apply the general
results to �113�-oriented layers �Sec. II A�. Based on these
results, we present phenomenological expressions for the
MA in strained high-index ferromagnetic layers �Sec. II B�.
We present the resistivity tensors for monoclinic and ortho-
rhombic symmetries �Appendix B� and calculate �long and
�trans for monoclinic symmetry and current direction along

�332̄� �Sec. II C�.

A. Structural properties

1. Distortion of arbitrarily oriented epitaxial layers

The strain in an epitaxial layer can unambiguously be

described by the distortion tensor Ā with components Aij
=dui /dxj, where u is the mechanical displacement field and
xi denote Cartesian coordinates along the cubic axes. In order
to calculate the distortion of epitaxial layers grown on arbi-

trarily oriented cubic substrates, we decompose Ā according
to Hornstra and Bartels21

Ā = 1�h + a � n , �1�

where � denotes the dyadic product and

�h =
as − al

al
�2�

is the isotropic strain that compresses �expands� the cubic
unit cell of the layer to the size of the substrate’s unit cell; as
and al denote the lattice parameters of substrate and relaxed
layer, respectively. n is the unit vector perpendicular to the
interface and a is a vector that represents the anisotropic
distortion of the layer. Figure 1 illustrates the superposition
of the displacements described by Eq. �1�: if we consider any
mathematical point in the unstrained layer at the distance x
from the interface, then this point has the distance �1+�h�x
from the interface after applying 1�h. The displacement from
this position into its final position is given by ax.

If the layer is in static equilibrium, there is no stress per-
pendicular to the surface. Applying Hooke’s law, this con-
straint leads to the set of linear equations �i=x ,y ,z�

Cijkl�klnj = �
jkl
��h�kl +

1

2
�aknl + alnk��Cijklnj = 0, �3�

where

�kl =
Akl + Alk

2
�4�

are the components of the �symmetrized� strain tensor and
Cijkl denote the elastic stiffness constants of the crystal. With
given Cijkl and n, Eq. �3� can be solved for the components
ai, which are proportional to �h. Considering Eq. �1�, the

distortion tensor Ā is then known as a linear function of the
only remaining parameter �h, which can be determined ex-
perimentally as follows.

We label lattice planes by a single index m which stands
for a Miller index triplet, e.g., m= �hkl�, and we sometimes
refer to planes by their normal m. A lattice plane m within a
distorted layer in general encloses an angle ��m with the
corresponding lattice plane in the substrate, cf. Fig. 1. Fur-
thermore, the distortion causes a relative difference ��d /d�m
between the lattice plane spacings in layer and substrate.
Both, ��d /d�m and ��m, are accessible via HRXRD and are
related to �h by the expressions21

��d

d
	

m
=

dm
l − dm

s

dm
s =

m · a��h�
1 + �h

cos �m, �5�

��m =
m · a��h�

1 + �h
sin �m, �6�

where �m is the angle between the surface normal and the
lattice plane m. As described in detail in Ref. 22, the sepa-
ration of layer and substrate peak decreases with decreasing
layer thickness. Therefore, care has to be taken when deter-
mining �d /d and �� within the framework of kinematic
x-ray theory.22 To give an example, for �001�-oriented
�Ga,Mn�As layers with a manganese concentration of 5%,
corresponding to a lattice mismatch �a /a
0.21%,4 the peak
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FIG. 1. �Color online� The points S, O, and R are located within
the interface between substrate and layer. n, p, m, and m� are unit
vectors. n and p are normal and parallel to the interface, respec-
tively; m and m� are perpendicular to the lattice plane m= �hkl� and
m�= �h�k�l��. They lie within the plane spanned by n and p and are
symmetrically oriented with respect to n ��m=�m��. Before any
strain is being applied, the point T has the distance x from the
interface. The displacement to its final position U can be described
as a superposition of a hydrostatic compression of the �unstrained�
layer �T→P� and a displacement by xa �P→U�, cf. Eq. �1�. The
hydrostatically compressed layer has the same lattice plane spacing
as the substrate and therefore Eqs. �5� and �6� can be derived con-
sidering only the displacement described by a.
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shift exceeds 2% if the layer thickness is smaller than 100
nm, cf. Eq. �4� in Ref. 22.

In the remainder of the paper, we focus on the practically
relevant case of �hhl�-oriented substrates. Solving Eq. �3� for
substrate orientations n between �001� and �110�, the vector
a reads as

a = − b�sin�� + ��/�2

sin�� + ��/�2

cos�� + ��
�h, �7�

where b denotes the magnitude of the vector −a /�h and � the
angle between n and −a /�h. In Fig. 2, b and � are plotted for
several cubic semiconductors as a function of the angle �
between n and �001�, using the elastic constants given in

Ref. 23. The vector a always lies within the �11̄0� plane;
thus, this plain is a symmetry element �mirror plane� for all
layers grown on �hhl� substrates. Employing Eqs. �1�, �4�,
and �7�, the components of �̄ can be inferred from Fig. 2
using the equations

�xx = �yy = �h�1 −
b

2
sin�� + ��sin �� , �8�

�zz = �h�1 − b cos�� + ��cos �� , �9�

�xy = �xx − �h, �10�

�xz = �yz = −
b�h

2�2
�sin�� + ��cos � + cos�� + ��sin �� .

�11�

Equations �8�–�11� are essential for the understanding of the
MA and will be used in the derivation of the free-energy
density in Sec. II B.

Figure 2 shows that for crystal facets other than �001�,
�110�, and �111�, a is not aligned with the surface normal n
and the layer is therefore sheared toward a direction given by
the projection of a onto the surface �cf. Fig. 1�. Employing
Eq. �6�, the shear angle 	 of a n-oriented layer toward any
direction p�n, i.e., �p=90° is obtained from

	 = ��p =
p · a��h�
1 + �h

, �12�

where �h has to be determined by the procedure described
above. 	 can also be measured directly without making use
of the stiffness constants and the explicit form of a��h�, if we
choose two lattice planes m and m� with p= �m
−m�� /2 sin �m; insertion into Eq. �12� yields

� =
a�m − m��

2 sin �m�1 + �h�
=

Eq. �6�

��m − ��m�

2 sin2 �m
,

�13�

in agreement with Ref. 24. The angles ��m and ��m� can be
derived from rocking curves as described in Sec. III A. Equa-
tion �13� is valid if the two lattice planes m and m� are
equally inclined toward the surface, i.e., if �m=�m�, cf. Fig. 1.

So far, we have restricted our considerations to pseudo-
morphically grown layers. With minor modifications, Eqs.
�5� and �6� can also be applied to partially relaxed layers. In
Appendix A, we discuss how the relaxed lattice constant and
the degree of relaxation can be inferred from reciprocal
space maps �RSMs� for arbitrarily oriented substrates apply-
ing the formalism described above.

2. Application to (113)-oriented (Ga,Mn)As layers

We now apply the general equations derived in the pre-
ceeding section to the case of �113�-oriented layers. For the
following calculations, we use the elastic stiffness constants
of GaAs given in Ref. 23 neglecting the Mn alloying. This
assumption will be justified for �Ga,Mn�As layers with Mn
concentrations below 5% by the experimental results pre-
sented in Sec. III A. From Fig. 2 we obtain for �=25.2° the
values b=1.81 and �=−17.5°. Equation �7� then yields

a = − 1.81�0.095

0.095

0.991
�h. �14�

With Eqs. �8�–�11� we find for the strain tensor
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FIG. 2. �Color online� �a� Magnitude b= �a /�h� and �b� angle �,
calculated with various stiffness constants �Ref. 23�, are plotted as a
function of the angle � between n and �001�. Only for the highly
symmetric crystal orientations �001�, �111�, and �110� a aligns with
n.
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�̄ = �h�+ 0.95 − 0.05 − 0.35

− 0.05 + 0.95 − 0.35

− 0.35 − 0.35 − 0.62
 . �15�

Figure 3 schematically illustrates the crystal structure of the
distorted �113� layer. The position of each atom in the
strained layer was constructed by applying Eq. �1� together
with Eq. �14�: we start by putting a hydrostatically com-
pressed layer on the substrate. The unit cell of the layer in
this hypothetical state is identical to the unit cell of the sub-
strate, cf. the dashed and solid cubic unit cells in Fig. 3�a�.
The final position of each atom can be found by a displace-
ment along the direction given by a, where the magnitude of
the displacement is proportional to the distance x of the atom
from the interface �cf. Fig. 1�.

The distortion breaks the symmetry of the layer and the

only remaining symmetry element is a �11̄0� mirror plane;
hence, the distorted crystal is assigned to the point group
m�Cs�. This assignment is important for the derivation of the
resistivity tensor presented in Appendix B. For clearness, the
crystallographic unit cell of the distorted layer is depicted in
Fig. 3�b�; it becomes evident that the corresponding Bravais
lattice is base-centered monoclinic.

In order to connect �h with the experimentally accessible
quantity ��d /d�m, we apply Eq. �5� to the case of the sym-

metric m= �113� reflection ��113=0°�, i.e., we consider lattice
planes parallel to the surface. Equation �5� simplifies to

��d

d
	

113
= − 1.723

�h

1 + �h
= 1.723

al − as

as
. �16�

With �h as obtained from Eq. �16�, the shear angle of the

�113� layer toward �3̄3̄2� is inferred from Eq. �12�, reading
now as

	 = ��3̄3̄2 = − 0.544
�h

1 + �h
= 0.544

al − as

as
. �17�

Figure 3�a� tells us that this shear angle 	 of the layer as a

whole is the same as the angle ��3̄3̄2 between the �3̄3̄2�
lattice planes of substrate and layer, respectively.

For a direct measurement of 	, we use Eq. �13�. Referring
to Figs. 1 and 4, we choose m�= �333� and find the corre-
sponding plane m with equal inclination with respect to the

�113� plane by interpolating between the �1̄1̄5� plane and the
�004� plane as described in Ref. 24. We obtain for the shear
angle

	 =
��004 + 0.27���004 − ��1̄1̄5� − ��333

2 sin2��333�
. �18�

B. Magnetic anisotropy

MA is the dependence of a system’s free-energy density F
on the orientation of the magnetization direction m=M /M.
In the following, we assume the sample to consist of a single
ferromagnetic domain with a uniform magnetization whose
magnitude M is assumed to be constant; we therefore ana-
lyze the quantity FM =F /M.

For a phenomenological description of the MA in
�hhl�-oriented �Ga,Mn�As layers, we expand FM in powers
of the components mx, my, and mz of m along the cubic axes
�100�, �010�, and �001�, respectively. Considering terms up to
the fourth order in m, the only intrinsic contribution to FM
for an undistorted cubic layer is a cubic anisotropy

FM
cub. = Bcub�mx

4 + my
4 + mz

4� , �19�

due to the crystal symmetry. Extrinsic contributions to FM
are the shape anisotropy, caused by the demagnetization field
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FIG. 3. �Color online� �Ga,Mn�As�113�A layers exhibit a
monoclinic crystal symmetry. �a� The layer as a whole is sheared

toward �3̄3̄2� by an angle 	=��3̄3̄2, leaving the �11̄0� mirror plane
as the only remaining symmetry element. �b� Three-dimensional
view of the monoclinic base-centered unit cell with respect to the
distorted cubic unit cell. For the sake of clarity, the second basis
atom of the zinc-blende lattice is omitted in this sketch.
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FIG. 4. �Color online� Normal vectors of the lattice planes con-
sidered in Eq. �18�. Referring to Fig. 1, we chose m�= �333� and

p= �3̄3̄2�. We find a virtual lattice plane m with equal inclination
with respect to the �113� plane by interpolation between the �004�
and �1̄1̄5� plane. For the corresponding angles we find �m=�333

=�004+0.27��004−�1̄1̄5�.
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perpendicular to the layer, and a uniaxial in-plane contribu-
tion, whose microscopic origin is under debate.5,25–28 Most
likely the latter contribution originates from the incorpora-
tion of Mn which breaks the cubic symmetry of the lattice,5

FM
ex. = Bd�m · n�2 + Bu�m · t�2. �20�

Here n and t denote unit vectors along the surface normal

and �1̄10�, respectively, and Bd is related to the magnetiza-
tion M by Bd=
0M /2.

For distorted layers, further intrinsic contributions propor-
tional to the strain components �ij occur. These are referred
to as magnetoelastic contributions and are presented for ar-
bitrarily strained cubic crystals in Ref. 29. Considering in-
trinsic and extrinsic contributions up to the fourth order in m,
the free-energy density for �hhl�-oriented layers can be writ-
ten as

FM�m� = const + Bz2mz
2 + Bxymxmy + Bxz�mx + my�mz + Bz4mz

4

+ Bx4�mx
4 + my

4� + Bxyz2mxmymz
2 + Bx2yz�mx

+ my�mxmymz + Bd�m · n�2 + Bu�m · t�2. �21�

The anisotropy parameters are related to the strain compo-
nents by

Bz2 = b1��xx − �zz� , �22�

Bxy = 2b2�xy , �23�

Bxz = 2b2�xz, �24�

Bx4 = b4�xx −
3b3 + 2b4

6
�2�xx + �zz� −

Bcub

2
, �25�

Bz4 = b4�zz −
3b3 + 2b4

6
�2�xx + �zz� −

Bcub

2
, �26�

Bxyz2 = 2b5�xy , �27�

Bx2z2 = 2b5�xz. �28�

The parameters bi denote magnetoelastic coupling constants.
Using the trivial identity mx

2+my
2+mz

2=1, the contribution
Bxymxmy in Eq. �21� can be expressed in terms of Bu�m · t�2

and Bz2mz
2. Therefore, we will understand it to be contained

in the latter terms in the analysis of the experimental data in
Sec. III B.

In the case of �001�-oriented layers, the off-diagonal ele-
ments of �̄ vanish and Eq. �21� simplifies to the well-known
expression

FM�m� = const + �Bz2 + Bd�mz
2 + Bz4mz

4 + Bx4�mx
4 + my

4�

+
1

2
Bu�mx − my�2. �29�

Equation �21�, in particular, explains in a natural way the
occurrence of the uniaxial anisotropy Bz2mz

2 along �001�,
which has been introduced ad hoc in previous publications

in order to explain the results of angle-dependent ferro-
magnetic resonance17,18 and magnetotransport studies18,19 on
�113�A-oriented �Ga,Mn�As layers.

Furthermore, Eqs. �22�, �25�, and �26� account for the
strain dependence of the parameters Bz2, Bx4, and Bz4 �Ref.
30� found in a systematic study of �Ga,Mn�As layers grown
on relaxed �001�-oriented �In,Ga�As buffers:4 for �001� ori-
entation, the relation �xx
−1.1�zz holds and therefore Eqs.
�25� and �26� read as Bx4 = �0.6b3−0.7b4��zz−Bcub /2 and
Bz4 = �0.6b3+1.4b4��zz−Bcub /2, respectively. Figure 10 in
Ref. 4 shows an increase in Bx4 and a decrease in Bz4 with
increasing �zz. These findings agree with Eqs. �25� and �26�
if b3�7b4 /6 and b3 ,b4�0.

C. Anisotropic magnetoresistance

It is well established that �similar to the MA� the AMR,
described by the resistivity tensor �̄�m�, is strongly affected
by the crystal symmetry. In order to obtain an analytical
expression for �̄�m�, we performed a symmetry-based series
expansion of the tensor components up to the fourth order in
m. For cubic and tetragonal symmetries, the explicit form of
the resistivity tensor and a detailed description of its deriva-
tion can be found in Ref. 31. In this work, we generalize the
expressions for �̄�m� to monoclinic and orthorhombic sym-
metries. As shown in Fig. 10 of Appendix B, orthorhombic
symmetry applies to �110�-oriented substrates. For other
crystal facets �hhl� with 0�h� l, the crystal exhibits mono-
clinic symmetry. The explicit forms of the corresponding
tensors �̄�m� are given in Appendix B.

The AMR is usually probed by measuring the longitudinal
and transverse resistivities �long and �trans, respectively, which
are related to �̄�m� by �long= jT · �̄ · j and �trans= tT · �̄ · j. The
unit vectors j and t point along the current direction and the
transverse direction, respectively. The resistivities also allow
experimental access to the MA as shown in Refs. 4, 18, and
31. In Sec. II B, the magnetic anisotropy parameters intro-
duced in the preceding section are derived experimentally by
measuring the angular dependence of �long and �trans at vari-
ous fixed magnetic field strengths.

Now we turn to �113�-oriented layers. According to our
previous work,31 we are referring to the right-handed coordi-

nate system �j , t ,n�, where j � �332̄�, t � �1̄10�, and n � �113�;
mj, mt, and mn denote projections of m along these direc-
tions. We calculate �long and �trans by projecting the resistivity
tensor in Eqs. �B4� along j and t, respectively. We find

�long = �0 + �1mj
2 + �2mn

2 + �3mj
4 + �4mn

4 + �5mj
2mn

2 + �01mjmn

+ �02mj
3mn + �03mjmn

3 �30�

and

�trans = �6mn + �7mjmt + �8mn
3 + �9mjmtmn

2 + �10mj
3mt

+ �11mtmn + �12mtmn
3 + �13mj + �14mj

3 + �15mj
2mn

+ �16mjmn
3 + �17mj

2mtmn, �31�

where �i are linearly independent resistivity parameters re-
lated to the expansion coefficients of �̄. In the limit of un-
strained layers �cubic symmetry� the expressions for �long
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and �trans have the same form as in Eqs. �30� and �31�, how-
ever several resistivity parameters become linearly depen-
dent. This is due to the fact that the current direction along

�332̄� already breaks the cubic symmetry.
AMR studies frequently focus on the special case where

the magnetization lies within the layer plane �mn=0�. Equa-
tions �30� and �31� then simplify to

�long = �0 + �1mj
2 + �3mj

4 �32�

and

�trans = �7mjmt + �10mj
3mt + �13mj + �14mj

3. �33�

III. EXPERIMENT

We apply the theoretical expressions obtained in the pre-
ceding section to a series of �113�A�Ga,Mn�As layers with
different Mn concentrations. In Sec. III A, the hydrostatic
strain �h and thus �̄ as well as the shear angle of the layers
are derived quantitatively from HRXRD measurements. In
Sec. III A, we present angle-dependent magnetotransport
measurements which are theoretically described by the ex-
pressions for �long and �trans given by Eqs. �30� and �31� and
by the free-energy density given by Eq. �21�.

A. HRXRD measurements

�Ga,Mn�As layers with manganese contents up to 5%
were grown on �113�A-oriented GaAs substrates by low-
temperature molecular-beam epitaxy as described in Refs. 32
and 33. The structural properties of the �Ga,Mn�As layers
were experimentally investigated by HRXRD. We used a
Bruker Siemens D5000HR x-ray diffractometer operating
with the Cu K�1

radiation �=0.154 nm�. In order to mea-
sure the strain �h and the thickness of the �Ga,Mn�As�113�A
layers, we performed �-2� scans from the symmetric �113�
reflection. From the angular spacing of the layer thickness
fringes,34 we inferred a layer thickness of 150 nm. Employ-
ing Bragg’s law, the �-2� scan yields ��d /d�113, and via Eq.
�16� we obtained the hydrostatic strain �h. With that value of

�h, we calculated the shear angle 	 of the layer toward �3̄3̄2�
using Eq. �17�. In Fig. 5, �h and 	 are plotted against the Mn
content.

In order to verify the consistence of the formalism pre-
sented in Sec. II A 1, we measured the shear angle 	 of
several samples directly by applying Eq. �18�. We inferred
the angles ��333, ��004, and ��1̄1̄5 from � scans �rocking
curves� with opened detector slits at high �+� and low �−�
incidence. For an asymmetric reflection, as, e.g., the �333�
reflection, the corresponding lattice plane encloses an angle
�333 with the surface and the reflex can be measured at two
different angles �333

� =�333��333 with respect to the surface,
where �333 is the Bragg angle of the �333� reflection.35 If the
peak separation ��333 of layer and substrate is measured at
high and low incidence, ��333 can be determined via ��333
= ���333

+ −��333
− � /2. In Fig. 5, the results for the shear angle

	 obtained in this manner are shown in comparison to those
derived from the �-2� scans. The excellent agreement of the

values confirms the consistency of the theoretical formalism.
Furthermore, it demonstrates that the elastic stiffness con-
stants of GaAs are a good approximation for those of �Ga,M-
n�As within the investigated range of Mn concentrations.

B. Magnetotransport measurements

Most of the samples under study were found to be insu-
lating at T=4.2 K and could therefore not be investigated by
magnetotransport. The hole densities and Curie temperatures
of the three conducting samples were determined from high-
field magnetotransport measurements as described in Ref.
36. The results are summarized in Table I.

In order to investigate the MA and AMR in the
�113�A-oriented �Ga,Mn�As samples, we performed angle-
dependent magnetotransport measurements.4,18,31 For this
purpose, the samples were patterned into 0.3-mm-wide Hall-

bar structures oriented along �332̄� with Ohmic Au-Pt-Ti
contacts and the longitudinal voltage probes separated by 1
mm. The dc density was 220 A cm−2. The samples were
mounted on a rotatable sample holder in a liquid-He-bath
cryostat, which was placed between the poles of a Lake
Shore electromagnet. With this setup, the magnetic field
could be rotated arbitrarily with respect to the crystallo-
graphic axes of the �Ga,Mn�As layer.

We rotated the external field H at various fixed field
strengths within the three different crystallographic planes
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FIG. 5. �Color online� Shear angle 	 toward the �3̄3̄2� direction
and hydrostatic strain �h of �113�A-oriented �Ga,Mn�As layers plot-
ted as a function of the manganese concentration. The circles rep-
resent values for �h and 	 derived from �-2� scans using Eqs. �16�
and �17�, respectively. The stars denote values for 	 derived from
rocking curves applying Eq. �18�. Note that for the layer thickness
h=150 nm the �d /d and �� values obtained from the peak sepa-
rations cannot be considered reliable for Mn concentrations below
approximately 2% �Ref. 22�.

TABLE I. Structural and electronic properties of metallic
samples, studied via angle-dependent magnetotransport, cf. Sec.
II B.

xMn

�%�
�h

�%�
p

�1020 cm−3�
TC

�K�

4.9 −0.26 2.0 44

4.2 −0.23 2.2 47

3.1 −0.18 2.1 38
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depicted in Fig. 6 and measured �long and �trans. In the pres-
ence of an external magnetic field H, the free-enthalpy den-
sity GM =G /M instead of the free-energy density FM deter-
mines the magnetization orientation. We thus write

GM�H� = FM�m� − 
0m · H �34�

with FM�m� from Eq. �21�. The orientation m of the magne-
tization at a given external field H can be found by minimiz-
ing Eq. �34� with respect to m. At the maximum applied field
of 
0H=0.62 T, the Zeeman term 
0Hm dominates the
free-enthalpy density and m essentially aligns along H. With
decreasing field strength however, the MA described by the
anisotropy parameters in Eq. �21� more and more governs
the motion of the magnetization as H is rotated with respect
to the sample.

By fitting Eqs. �30� and �31� to our experimental data
recorded at 
0H=0.62 T, we obtained values for the resis-
tivity parameters �i. Using these parameters, we simulated
the measured angular dependencies of �long and �trans at
weaker fields by varying the anisotropy parameters until the
simulated curves fit the experiment. Figure 7 exemplarily

shows the experimental and simulated angular dependencies
of �long and �trans for the sample with 4.9% Mn.

The experimentally obtained anisotropy parameters are
listed in Table II. In agreement with other work,18,19 the MA
in our samples can be described by the parameters Bx4, Bz4,
Bz2, Bd, and Bu. As expected, the shape anisotropy parameter
Bd=
0M /2 increases with increasing Mn concentration.
Since both, the Mn concentration and the epitaxial strain,
influence the parameters Bx4, Bz4, and Bz2, it is not possible to
infer an unambiguous strain dependence of these parameters
from our experiment. Nevertheless, some qualitative conclu-
sions can be drawn: because the relations Bx4 −Bz4 =b4��xx
−�zz�
1.57b4 �h�0 and �h�0 hold for all samples, we find
a negative magnetoelastic coupling parameter b4 in agree-
ment with the discussion in Sec. II B. Since the parameters
Bxz, Bx2z2, and Bxyz2 are negligible �the influence of Bxy is
contained in Bz2 and Bu due to the linear dependence men-
tioned earlier�, we are led to the conclusion that the coupling
parameters b2 and b5 are smaller than b1 �at least for the
samples with xMn�4%�. For more strongly strained samples
or for samples with larger coupling parameters bi, however,
all anisotropy parameters given in Eqs. �22�–�27� may play a
role. Recently, Zemen et al.5 published a theoretical survey
on magnetocrystalline anisotropies in �Ga,Mn�As and com-
pared their findings to available experimental data. The
samples studied here exhibit the largest projection of the
easy axis on the �100� and �010� axes, cf. �II�. These findings
are in agreement with the experimental data summarized in
Ref. 5 for the given manganese concentrations, temperature,
and hole concentration.

In contrast to our previous experiments,18,31 the drastic
change in the longitudinal-resistivity curves, in particular,
those obtained in configuration �I�, upon variation in the ex-
ternal field strength �cf. Figs. 6 and 7� cannot solely be ex-
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FIG. 6. �Color online� Configurations �I�, �II�, and �III� for
angle-dependent magnetotransport measurements. The external
magnetic field H was rotated within the planes normal to n � �113�,
j � �332̄�, and t � �1̄10�.

0.62T

0.54T
0.49T

0.45T

0.41T

0.35T

0.31T

0.26T

0.21T

0.16T

0.11T

0.62T
0.54T
0.49T

0.45T

0.41T

0.35T

0.31T

0.26T

0.21T

0.16T

0.11T

0 100 200 300 400 0 100 200 300 400 -100 -50 0 50 100

[3̄3̄2] [11̄0] [332̄] [1̄10] [3̄3̄2] [113] [11̄0] [1̄1̄3̄] [1̄10] [113] [1̄1̄3̄] [3̄3̄2] [113]

I (113) plane II (332̄) plane III (1̄10) plane

angle of rotation (degree)

ρ
lo

n
g
(a

rb
it
ra

ry
u
n
it
s)

ρ
tr

a
n
s
(a

rb
it
ra

ry
u
n
it
s)

FIG. 7. �Color online� Angular dependence of the longitudinal and transverse resistivities at various external magnetic field strengths
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4.9% Mn and the hydrostatical strain is �h=−0.26%. The longitudinal-resistivity curves can be simulated using H-dependent resistivity
parameters, cf. Fig. 8. In particular, for configuration �I� the longitudinal-resistivity parameters strongly vary with the field strength H. For
comparison, simulated curves with the unchanged resistivity parameters as obtained at 
0H=0.62 T are shown for 
0H=0.21 T �dashed
lines�. The transverse-resistivity parameters are found to be constant within the experimental magnetic field range.

STRAIN, MAGNETIC ANISOTROPY, AND ANISOTROPIC… PHYSICAL REVIEW B 81, 245202 �2010�

245202-7



plained by MA. A satisfactory agreement between theory and
experiment can only be obtained by allowing for field-
dependent longitudinal-resistivity parameters. In Fig. 8, the
best-fit longitudinal-resistivity parameters of the sample with
4.9% Mn are plotted as a function of the magnetic field. The
longitudinal-resistivity parameters of the samples with 4.2%
and 3.1% Mn showed a similar field dependence. In contrast,
the transverse resistivities shown in Fig. 7 can be simulated
with field-independent resistivity parameters �6-�17. In order
to obtain a good fit of the experimental data, all parameters
in Eq. �31� with exception of �9 and �17 are required. The
variation in the line shapes upon the field strength exclu-
sively arises from the MA described by the anisotropy pa-
rameters from Eq. �21�. Therefore, we mainly focused on the
transverse resistivities when deriving MA parameters. Field-
dependent resistivity parameters have also been reported by
other groups for �113�A-oriented �Ga,Mn�As �Ref. 19� and
for �001�-oriented �Ga,Mn�As.37 In Ref. 37 the field depen-
dence was studied up to 9 T.

The microscopic origin of these findings is not clear yet.
A �001�-oriented reference sample, grown at the same con-
ditions as the �113�A-oriented layer with xMn=4.9%, showed
a similar field dependence of the longitudinal resistivities,
indicating that the effect is not primarily related to the sub-
strate orientation.

IV. SUMMARY

Starting from a continuum mechanical treatment of the
lattice distortion in high-index epilayers, a general expres-
sion for the strain tensor �̄ of �hhl�-oriented layers was de-

rived. The isotropic strain component �h �and thus �̄� as well
as the shear angle 	 were related to the experimentally ac-
cessible quantities �d /d and ��. Applying the equations to
the special case of �113�A orientation, �h and 	 could be
experimentally determined for a series of �113�A-oriented
�Ga,Mn�As layers using HRXRD. Based on symmetry con-
siderations, analytical expressions for the free-energy density
and the resistivity tensor were derived by means of series
expansions in terms of the magnetization components up to
the fourth order, allowing for a phenomenological descrip-
tion of the MA and AMR, respectively. The anisotropy pa-
rameters were explicitly given as a function of the strain-
tensor components. The expression for the resistivity tensor,
deduced for monoclinic and orthorhombic crystal symme-
tries, can be used to calculate the longitudinal and transverse
resistivities for arbitrary current directions. In order to probe
the MA and AMR of the �Ga,Mn�As samples by angle-
dependent magnetotransport, expressions for the resistivities

were derived for current direction along �332̄�. The measure-
ments were performed at 4.2 K and revealed the presence of
a strong uniaxial anisotropy Bz2mz

2 along �001� which could
be explained within our theoretical model by the explicit
form of �̄. Further significant contributions to the MA were
found to be Bz4mz

4, Bx4�mx
4+my

4�, Bd�m ·n�2, and Bu�m · t�2.
Whereas the transverse-resistivity parameters turned out to
be nearly constant within the range of applied magnetic
fields, the longitudinal-resistivity parameters were found to
strongly depend on the field strength.
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APPENDIX A: PARTIALLY RELAXED LAYERS

In this appendix, we describe how the equations presented
in Sec. II A can be used to characterize partially relaxed
layers. Figure 9 illustrates that the layer in the partially re-
laxed state can be described as a layer which is commensu-
rate with a virtual cubic substrate having a lattice constant
av. The hydrostatic strain in the layer is then described by the
parameter

�h
� =

av − al

al
, �A1�

where al is the relaxed lattice parameter of the layer. In order
to describe partially relaxed layers, we have to replace �h by

TABLE II. Anisotropy parameters of the samples under study as obtained from angle-dependent magne-
totransport measurements.

xMn

�%�
Bx4

�mT�
Bz4

�mT�
Bz2

�mT�
Bd

�mT�
Bu

�mT�

4.9 −46 −11 20 18 −8

4.2 −56 −25 20 12 −8

3.1 −65 −40 5 5 −5
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FIG. 8. Dependence of the longitudinal-resistivity parameters
�0-�03 on the field strength 
0H for a �Ga,Mn�As�113�A layer with
a manganese concentration of 4.9%. The decrease in �0 with in-
creasing 
0H reflects the negative magnetoresistance. The lines are
guides to the eye.
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�h
� in all equations of Sec. II A. In particular, we obtain

��d

d
	

m
=

dm
l − dm

v

dm
v =

m · a��h
��

1 + �h
� cos �m, �A2�

��m =
m · a��h

��
1 + �h

� sin �m �A3�

instead of Eqs. �5� and �6�.
From a RSM around an asymmetric reflex �m�n�, ��m

can be inferred because it is the angle between the
reciprocal-lattice vector of layer Gm

l and substrate Gm
s , re-

spectively, cf. Fig. 9. �h
� can then be obtained from Eq. �A3�.

Assuming that the lattice parameter of the �real� substrate is
known, the reciprocal lattice of the substrate can serve as a
reference; this allows an accurate measurement relative to
the substrate without relying on the absolute angle scale of
the diffractometer. The length of the layer’s reciprocal-lattice
vector �Gm

l � can be inferred from the RSM and consequently
the lattice plane spacing of the layer dm

l =2� / �Gm
l � is ob-

tained. By inserting �h
� into Eq. �A2�, we find the value of dm

v .
Because the virtual substrate is cubic, we obtain av
=dm

v �h2+k2+ l2 and with Eq. �A1� we find al. Thus we can
determine the degree of relaxation

R =
av − as

al − as
. �A4�

If the relaxed layer is tilted with respect to the substrate,
as it has been reported for relaxed �In,Ga�As layers grown on
�001�GaAs,4 this tilt needs to be considered in the determi-
nation of �h

�. The tilt angle �= � �Gn
l ,Gn

s� can be inferred
from a RSM around a symmetric reflection �m=n� and the
corrected angle ��m

corr=��m−� has to be inserted into Eq. �6�
in order to obtain �h

�.

APPENDIX B: RESISTIVITY TENSOR FOR MONOCLINIC
AND ORTHORHOMBIC SYMMETRIES

We derived the resistivity tensors for monoclinic and
orthorhombic symmetries up to the fourth order in m;
thereby we made use of von Neumann’s principle as de-
scribed in Ref. 31. In Fig. 10, we show that for �110�-
oriented substrates the layer exhibits orthorhombic symme-
try. For this case the generating matrices are

S̄3 = �− 1 0 0

0 − 1 0

0 0 1
 �B1�

and

S̄5 = �0 1 0

1 0 0

0 0 1
 . �B2�

Note that here the matrix S̄5 has been adapted to the cubic
frame of reference, where the symmetry operation is a reflec-
tion at the xy plane and not a reflection at the y plane as in

the canonical representation for the matrix S̄5. We obtain for
the resistivity tensor

�̄orthorhombic = �̄tetragonal + ��̄orthorhombic, �B3�

where �̄tetragonal is given by Eqs. �3�–�5� in Ref. 31 and
��̄orthorhombic by Eq. �B5�, respectively.

For monoclinic symmetry, the only generating matrix is

S̄5 and we find

�̄monoclinic = �̄orthorhombic + ��̄monoclinic, �B4�

where ��̄monoclinic is given by Eq. �B6�. The Greek letters in
Eqs. �B5� and �B6� are nonvanishing linear combinations of
the galvanomagnetic tensors, cf. Eq. �2� in Ref. 31,

asas

av

∆τm

τm

τm

Gs
m

Gv
m

Gl
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FIG. 9. �Color online� A partially relaxed layer can be thought
of as a layer that pseudomorphically grows on a virtual cubic sub-
strate with a lattice constant av different from the true substrate
lattice constant as. Lattice planes m are parallel in real and virtual
substrates. The relative inclination ��m of the plane m in the layer
with respect to m in the virtual substrate is the same as the inclina-
tion with respect to m in the real substrate. If the layer was tilted
with respect to the substrate the reciprocal-lattice vectors Gn

s and Gn
l

of a symmetric reflection would not be parallel. Note that in this
schematic the cubes do not necessarily represent the cubic unit
cells.

[001][110]

[1̄10]
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c

FIG. 10. �Color online� Distortion of the fcc cubic unit cell
�black lines� when a layer with relaxed lattice constant al is grown
on a �110� plane of a substrate with lattice constant as�al. The gray
points denote the face-centered atoms. For the zinc-blende lattice
the only symmetry elements are a twofold rotational axis around
�001� and two �v planes; thus the point group is mm2 �C2v�. The
crystallographic unit cell of the body-centered orthorhombic Bra-
vais lattice has the lattice parameters a, b, and c. Assuming pseudo-
morphic growth, the relations between the orthorhombic lattice pa-
rameters and the cubic lattice constant of the substrate are
a=as

�2 /2 and b=as.
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��̄orthorhombic = � 0 �1 0

�1 0 0

0 0 0
 + � 0 0 �1mx

0 0 − �1my

− �1mx �1my 0
 + � 0 �1�mx

2 + my
2� 0

�1�mx
2 + my

2� 0 0

0 0 0
 + ��2mxmy 0 �4mymz

0 �2mxmy �4mxmz

�4mymz �4mxmz �3mxmy


+ � 0 0 �1mx
3

0 0 − �1my
3

− �1mx
3 �1my

3 0
 + � 0 �2mxmymz 0

− �2mxmymz 0 0

0 0 0
 + � 0 0 �3mxmy

2
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2my

− �3mxmy
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3 0 �5my
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0 �3mxmy
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2 + my

2�
 + � 0 0 �7mx
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0 0 �7mxmy
2mz

�7mx
2mymz �7mxmy

2mz 0
 , �B5�

��̄monoclinic = � 0 0 �2

0 0 �2

�2 �2 0
 + � 0 �2�mx + my� �3mz

− �2�mx + my� 0 − �3mz

− �3mz �3mz 0
 + � 0 0 �5mx

2 + �6my
2

0 0 �5my
2 + �6mx

2
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2 + �6my

2 �5my
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2 0
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